首页> 外文OA文献 >Land Cover Classification from Multi-temporal, Multi-spectral Remotely Sensed Imagery using Patch-Based Recurrent Neural Networks
【2h】

Land Cover Classification from Multi-temporal, Multi-spectral Remotely Sensed Imagery using Patch-Based Recurrent Neural Networks

机译:多时相多光谱遥感土地覆盖分类   使用基于补丁的递归神经网络的感知图像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sustainability of the global environment is dependent on the accurate landcover information over large areas. Even with the increased number of satellitesystems and sensors acquiring data with improved spectral, spatial, radiometricand temporal characteristics and the new data distribution policy, mostexisting land cover datasets were derived from a pixel-based single-datemulti-spectral remotely sensed image with low accuracy. To improve theaccuracy, the bottleneck is how to develop an accurate and effective imageclassification technique. By incorporating and utilizing the completemulti-spectral, multi-temporal and spatial information in remote sensing imagesand considering their inherit spatial and sequential interdependence, wepropose a new patch-based RNN (PB-RNN) system tailored for multi-temporalremote sensing data. The system is designed by incorporating distinctivecharacteristics in multi-temporal remote sensing data. In particular, it usesmulti-temporal-spectral-spatial samples and deals with pixels contaminated byclouds/shadow present in the multi-temporal data series. Using a FloridaEverglades ecosystem study site covering an area of 771 square kilo-meters, theproposed PB-RNN system has achieved a significant improvement in theclassification accuracy over pixel-based RNN system, pixel-based single-imageryNN system, pixel-based multi-images NN system, patch-based single-imagery NNsystem and patch-based multi-images NN system. For example, the proposed systemachieves 97.21% classification accuracy while a pixel-based single-imagery NNsystem achieves 64.74%. By utilizing methods like the proposed PB-RNN one, webelieve that much more accurate land cover datasets can be produced over largeareas efficiently.
机译:全球环境的可持续性取决于大面积地区准确的土地覆盖信息。即使有越来越多的卫星系统和传感器获取具有改善的光谱,空间,辐射度和时间特征的数据以及新的数据分配策略,大多数现有的土地覆盖数据集还是从基于像素的单日期多光谱遥感图像中获得的,但精度较低。为了提高准确性,瓶颈在于如何开发一种准确有效的图像分类技术。通过在遥感图像中纳入并利用完整的多光谱,多时间和空间信息,并考虑其继承的空间和顺序相互依赖性,我们提出了一种针对多时间遥感数据量身定制的基于补丁的新RNN(PB-RNN)系统。该系统通过在多时相遥感数据中纳入独特的特征而设计。特别是,它使用多时间光谱空间样本,并处理被多时间数据序列中存在的云/阴影污染的像素。拟议的PB-RNN系统使用一个占地771平方公里的FloridaEverglades生态系统研究站点,与基于像素的RNN系统,基于像素的单图像NN系统,基于像素的多图像相比,在分类精度上有了显着提高。 NN系统,基于补丁的单图像NN系统和基于补丁的多图像NN系统。例如,提出的系统可实现97.21%的分类精度,而基于像素的单图像NN系统可达到64.74%。通过利用像提出的PB-RNN这样的方法,webelieve可以在大面积上有效地产生更准确的土地覆盖数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号